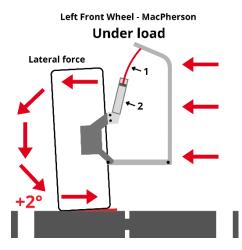
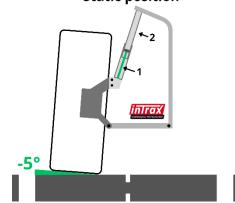


Upside-Down MacPherson

A MacPherson suspension is the most widely used solution for wheel suspension worldwide. The conventional variant consists of a tube (2) with the piston rod/spindle (1) inside. This construction is relatively simple, lightweight, and cost-effective, and it works well for standard applications. However, this design has a weak point: during cornering and under high loads, the piston rod bends. As a result, the damping process is disrupted, with the risk of deformation or even failure.

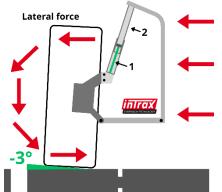

In a static position there seems to be little difference between a conventional and an Upside-Down MacPherson. The wheel remains in its fixed position, the forces are neutral, and the damper performs its basic function.

The difference becomes most apparent under load:


Static position -5°

Conventional MacPherson

- Piston rod as load-bearing element
- Rod bends under lateral forces
- Damping process gets disturbed
- Extra friction and risk of leakage
- Deformation or breakage under high load
- Significant camber change
- Result: less precision, unpredictable handling, shorter lifespan


Left Front Wheel - Upside-Down MacPherson Static position

Upside-Down MacPherson

- Inverted design with outer tube
- Outer tube absorbs lateral forces
- Piston rod remains straight
- Damping process stays pure and consistent
- Minimal camber change
- Result: predictable handling, higher reliability and more grip

Left Front Wheel - Upside-Down MacPherson Under load Lateral force

